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Abstract—In recent years, non-communicable diseases,
diseases intransmittable through human interaction, have
cemented themselves as a leading cause of death globally. These
diseases are exacerbated by various social, economic and
geographical factors within communities. Despite their
resounding consequences on community health, the compilation
of medical surveys is both costly and time consuming. This study
uses a machine learning approach to predict the population
proportion with Asthma, High Blood Pressure, Cancer, Diabetes,
and Poor Mental Health within census tract populations in three
states. Through an evaluation of 8 different regression models on
their predictive capabilities of disease prevalence, the Cubist
model held the strongest results for every disease, achieving
considerably low relative mean value errors of 3.849%, 6.077%,
7.656%, 7.866%, and 5.531% towards each of the
non-communicable diseases, respectively. Out of the four
categories split from 41 input features- Sociodemographic,
Economic, Environment/Geographic, and Environmental Justice-
Sociodemographic features consistently were the highest
contributors. A lightweight model with comparable accuracy to
the full feature set (≤0.1% difference) was found to require only
the 20 most important features from every Cubist model. This
study provides insight towards machine learning models’
capabilities in enhancing the United States’ understanding of
domestic epidemiology determinants.
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I. INTRODUCTION

The rising “invisible epidemic” [1], non-communicable
diseases (NCDs)-diseases induced by human environment
intransmissible through personal contact- have cemented
themselves as a leading cause of death, accounting for over 41
million, or 74% of, global deaths annually [2]. These diseases
fall under four primary classifications: cardiovascular
diseases, cancer, chronic respiratory diseases, and diabetes
mellitus [1]. Given their resounding consequences towards
global health, early detection and intervention is crucial in
preventing acute disease contraction from advancing to
chronic stages. Currently, key perpetrators of interest include
sociodemographic determinants, or those that influence health,
behaviors, and well-being of populations or environmental
justice, which is the study of demographic-based influences
affecting the proximity of health hazards, including power
plants, railways, and contaminated water bodies. Existing
medical health surveys, though accurate, are time-consuming

and whose results are often deemed obsolete in a matter of
years due to the rapidly shifting landscape of NCDs.
Additionally, as wealth and social disparities widen across the
United States, data reporting bias may prevail, skewing
disease prediction data toward populations with greater access
to healthcare.

Machine learning, first proposed by Arthur Samuel in his
1959 paper [3], offers a solution to traditional, precomputed
algorithms by learning spatio-temporal relationships between
dataset features, enabling a computer algorithm to derive its
own constants and coefficients that best approximate
continuous and discrete values. In the healthcare field,
machine learning has seen a breadth of usages, including
Support Vector Machines for breast cancer prediction and
diagnosis [4], Deep Learning for pneumonia imaging
classification [5], and Extreme Gradient Boosting for binary
classification of neonatal mortality [6]. These models are
tailored to specific tasks, with no one-size-fits-all solutions
currently existing. While most existing machine learning
techniques are outperformed by medical professionals, the
rapid development and refinement of new technologies holds a
promising future in machine learning working closer alongside
professionals in detecting, and ultimately, preventing, various
healthcare complications.

There exists research in the realm of machine learning for
disease prediction. A research paper by Luo et al. [7] utilized
linear, regularized, and decision tree models in order to predict
the prevalence of 6 NCDs across all 50 United States,
achieving a median Pearson correlation of 0.88. However, they
noted potential biases due to non-standardized data collection,
which hindered model predictive capabilities. Similarly, Feng
et al. [8] conducted a study on 6 NCDs across 196 census
tracts in Austin, Texas, using a variety of national and local
datasets, including data from the United States Smart Location
Database (SLD), Social Vulnerability Index (SVI), 500 Cities
Project, and City of Austin’s 311 service request data. The
researchers found that the SVI dataset, in conjunction with the
311 data, performed best on their 6 measured NCDs. While
the models performed reasonably well, some of their
employed datasets contained data for only select regions, not
providing coverage for a majority of cities across the United
States. Thus, both studies highlight the need for diverse and
standardized data samples to accurately predict health
outcomes.



This study aims to provide a machine learning approach
towards predicting and understanding the prevalences of five
NCDs within communities: asthma, high blood pressure,
cancer, diabetes, and poor mental health. This region of study
was chosen due to its existing socio-demographic interest
between recent devastating wildfires, wealth disparities among
urban cities, and diverse topographies; a generally
representative subset that could serve as a precursor for
nationwide NCD evaluation.

II. METHODOLOGY

The complete machine learning workflow (Fig. 1) consists
of data retrieval, data preprocessing, model selection, model
fine tuning, model evaluation, and result visualization and
interpretation, in that respective order. The iterative process
between model fine tuning and model evaluation results in
continuous feedback for algorithmic performance, ensuring
the final model is optimal towards predicting all five output
diseases. The careful selection of models based on past
literature and predictive potential ensures that results are
worthwhile for this application.

Fig. 1. Diagram of the employed machine learning workflow.

A. Data Retrieval and Feature Selection
The two datasets used were the United States

Environmental Justice Index (EJI) and Smart Location
Database (SLD). The EJI data, from the Center for Disease
Control and Prevention, contains social, economic,
demographic, and health outcome data from every census tract
in the United States. The other dataset, the (SLD) from the US
Environmental Protection Agency (EPA), contains
geophysical, demographic, and economic data from census
tracts in the United States. These census tracts, which vary
both in area and population, allow for surveys and other
population-based metrics to be compiled by the United States
Census Bureau. The two databases were initially filtered down
to the three target states by their FIPS codes, corresponding to
6, 41, and 53, respectively, for California, Oregon, and
Washington. In the data, every census tract has a unique
designation achieved through its state FIPS, county FIPS, and
tract CE codes. Although the EJI dataset solely contained
unique tracts, the SLD data contained numerous census tracts
with multiple data points. For these tracts, weighted sums
were required to be calculated for all target features. Given the
varying population densities and areas of the 10,243 census
tracts, only percentage-based features were selected as
candidates for the filtered dataset. In total, 43 input and five
output features were selected for the dataset (Table S1). Out of
the input features, three features (“Pct_Wtr”, “Pct_Land”,
“Pct_Unpr”) were created through feature engineering existing
geographical variables from the SLD, and relate to the
proportion of land in a given census tract encompassed by
water, land, and land legislatively unprotected from industrial
development, respectively. With the complex nature of disease
predictions, pulling multi-faceted data that describe a variety

of the factors within a census tract is imperative. Thus, the
input features were classed into four categories, with no
external biases being attributed with any given category:
Sociodemographic, Environment/Geographic, Environmental
Justice, and Economic. The five predicted outputs include the
risk of Asthma, High Blood Pressure, Cancer, Diabetes, and
Poor Mental Health among a census tract’s populations, all of
which were retrieved from the EJI dataset.

B. Data Preprocessing
Both the input and output data were found to carry varying

degrees of skew, which has been proven extensively to
decrease machine learning model performance [9]. While
models generally resistant to skew do exist, transformations
were applied to all input features with an absolute skew
coefficient greater than 0.5. Positive skews beyond the
threshold had a normal Quantile Transformation applied,
while negative skews beyond the threshold experienced a
Yeo-Johnson transformation [10]. The two transformations’
preservation of the rank order of features makes them
extremely effective at preserving data integrity. While some
features still carried varying degrees of skew following the
transformations, the features generally became far more
interpretable by the models. Following the input
transformations, a pairwise correlation matrix was generated
(Fig. S1), containing the degree of linear correlation between
variables, with absolute values closer to 1 representing
stronger correlations and value’s signum representing their
respective correlation (positive or negative). To reduce the risk
of collinearity, which results in models that erroneously place
excessive influence on highly correlated features, either of two
variables was removed if their correlation coefficient exceeded
0.95. This resulted in the removal of two features (“D1B” and
“D2A_WRKEMP”), reducing the dataset into 41 input
features. The complete feature correlation matrix is included
in the supplemental information.

The output variable distributions were also analyzed.
Although outliers do exist, their distributions concur with the
breadth of different socioeconomic and demographic
compositions across the analyzed census tracts, and thus
remain imperative to keep. While most of the outputs hovered
around a positive skew coefficient of 0.5, the output
prevalence of Cancer contained a moderately high skew
coefficient of 0.92, potentially hindering model predictive
abilities. Although prior machine learning studies have used
the Synthetic Minority Over-Sampling Technique for
Regression with Gaussian Noise (SMOTER-GN) technique
[11]. Its over-sampling results in higher-complexity models
with larger datasets, increased training time, and loss of
original data integrity. Thus, a y-transformation technique was
used instead to construct a Gaussian output distribution. For
this data, a Box-Cox transformation [12], proven to hold better
performance and reliability than primitive (log, inverse,
square-root) transformations [13], was used:

where lambda (λ) represents the power to exponentiate the
value X by. The λ = 0 function can be derived as the function
as the limit of the λ ≠ 0 piecewise approaches λ = 0. For this



transformation, a larger absolute lambda equates to a greater
enacted power transformation, creating a versatile
transformation approach suitable for multiple varied skew
levels. Additionally, the inclusion of the lambda value allows
for the inverse Box Cox transformation to be applied to a
transformed dataset, effectively returning it to its original
state, a technique used in the subsequent sections to equate the
evaluation of Cancer prevalence with other outputs. By
applying a Box-Cox transformation, the right-skewed Cancer
prevalence fell from a coefficient of 0.92 down to 0.04 (Fig.
2). To holistically and accurately represent our model, the
census tract data was shuffled, and then broken into a
train-validation and test split of 90/10, for 9218
train-validation and 1025 test rows; the extent of training data
ensures the machine learning models are exposed to the largest
majority of possible census tract cases.

Fig. 2. Cancer prevalence pre- and post- Box-Cox transformation.

C. NCDs Overview
For the machine learning task, it is imperative to

contextualize the output diseases, each of which holds unique
implications towards the various facets of our data. These
diseases were selected based on their prominence in existing
society and need for further analysis.

Asthma is an, often chronic, respiratory disease caused by
airway hyperresponsiveness, inflammation, and remodeling
[14]. Its most common symptoms involve shortness of breath,
particularly following periods of high physical activity. While
it is uncommon for asthmatic symptoms to result in death, its
impact towards individual quality-of-life is severe, resulting in
sleep disturbances, physical limitations, detracted lung
function, and use of prescription medications such as inhalers
[15].

High blood pressure, or hypertension, involves the excess
of cardiovascular function that stresses heart and blood vessel
organs [16]. Particularly in the working-aged population,
sustained levels of work- and social- induced stress have a
prominent linkage towards hypertension contraction rates [17].
While medical treatments to diagnose and prevent the
exacerbation of hypertension exists, untreated cases serve as a
precursor to both short-term effects such as coronary heart
disease and stroke [18] and long-term effects such as
Alzheimer’s Disease [19], both types of which degrade
physical and emotional wellbeing and drastically increase
associated mortality risks.

Cancer’s prominence is marked by the current absence of
an empirical cure. This disease is heavily influenced by
individual lifestyles, most well-researched through excess

ultraviolet exposure, which increases the risk of cancerous
tumor mutation burdens irreparable by DNA damage response
pathways [20], and the consumption of specific chemical- and
bacteria- pervasive foods, such as red meats [21].

Diabetes is a hereditary disease contracted through
sedentary lifestyles and overconsumption of glucose-rich
foods [22] that holds a strong causal relationship with obesity
[23]. This is caused by the autoimmune destruction of
insulin-producing beta cells in the pancreas [24]. Existing
treatments for diabetes include prescription medication, gene
therapy, and lifestyle changes [25].

As one of the most rapidly proliferating global diseases,
poor mental health is increasingly being studied within
populations of all social classes. While poor mental health can
be addressed through personalized therapeutic care, its
surrounding stigmas often deter individuals from seeking help,
risking longer-term consequences of suicide, alcoholism, and
schizophrenia [26].

D. Model Overview
In total, eight regression models, selected on the basis of

past predictive capabilities and applicability to this study’s
methodologies, were selected to evaluate each of the five
NCDs. A brief overview of the selected models are described
below, in alphabetical order:

1. Cubist: Based off of Quinlan’s M5 model tree [27],
this decision tree-based model utilizes a series of regressive
models at the terminal leaves of the model. The parameters of
these regressive models, which appear at every tree node, are
dictated by the feature rules of the node. 

2. Elastic Net: This linear regression addresses the
individual sparse and regularization benefits of Lasso (L1) and
Ridge (L2) regularization, respectively, by grouping features
to either include or exclude in the resulting linear regression. 

3. Gradient Boosting (GB): A sequential, tree-based
regressor that aims to incrementally minimize the losses
(residuals) of prior, weak decision trees. Every succeeding tree
is fitted to the residuals of the past trees in order to build a
better generalized model. For this regressor, learning rate is
the most influential feature towards model outputs.

4. k-Nearest Neighbors (kNN): The k-Nearest
Neighbors (kNN) algorithm, first proposed by Fix et al. [28],
involved discriminately clustering a sample given an input
sample of varying dimensions. In regressive tasks, the
algorithm computes the weighted mean of a data point’s K
closest points, as dictated by the distance function of the
algorithm. 

5. Lasso: This L1 regularization model employs a
feature-coefficient algorithm to create a sparse linear
regression composed of a weighted subset of features. In
doing so, the model effectively diminishes the effect of
ineffectual features. Thus, it is commonly used as a tool for
dimensionality reduction on high-complexity datasets.

6. Multi-Layered Perceptron (MLP): Developed by
Rumelhart et al. [29], this supervised technique utilizes
neurons within each successive layer to calculate portions of



the output. The resulting prediction is a summation of the
individual outputs of every individual neuron in the final layer.

7. Random Forest (RF): The Random Forest model
utilizes perturbation- the artificial addition of noise- to build a
robust ensemble of weaker Decision Trees. In addition, its
induction of randomness allows a more diverse set of
individual trees to be built, addressing the variance limitations
exhibited in said trees.

8. Ridge: This L2 regularization aims to impose
penalties on certain feature coefficients, albeit not creating a
sparse model. This shrinkage is particularly powerful towards
addressing multicollinearity between features, effectively
improving its linear regression performance.

E. Model Evaluation Metrics
Model evaluation is an imperative step in ensuring result

validity. For this study, three evaluation metrics were used:
coefficient of determination (R2), root mean squared error
(RMSE), and mean absolute percentage error (MAPE).

The equation for R2 is shown above, where yi is the
expected value, i is the predicted value, and ȳi is the mean of𝑦

^

all expected values. This metric is particularly important in
regression for its denotation of the correlation, or trend,
between the predicted versus expected output. In cases where
the error is sufficiently large, R2 is able to achieve negative
values, equivalent to a lack of any correlation between
predicted and expected values. 

The equation for RMSE is shown above, where yi is the
expected output, i is the predicted output, and N is the𝑦

^

number of analyzed census tracts. This metric is particularly
powerful due to its interpretability with its sensitivity to
outliers, strictly penalizing the model for larger errors. 

The equation for MAPE is shown above, where the
summation of the difference of expected (yi) versus predicted (

i) prevalence is averaged over N, the number of census tracts.𝑦
^

This measure provides the average “accuracy”, or predictive
ability, of a model, and is comparable to related studies with
varying output scales, due to its relative, rather than absolute,
measure. This quantity is expressed on a flotational scale from
0 onwards, where a MAPE of 0 denotes no quantitative
difference between the predicted and expected values.

III. RESULTS

A. Model Results
Given the significance of hyperparameters towards

influencing a machine learning model’s underlying
relationship extraction abilities, model hyperparameter tuning
was conducted through a grid search. In this process, values

were uniformly selected along a given range, with each value
corresponding to its respective parameter. Given the large
parameter search space for each of the eight models, a
randomized grid search was used to conduct an evaluation on
the largest range of possible parameter combinations. For this
paper, the randomized search employed tested 100 different
parameter combinations with 5-fold cross validation to ensure
predictive robusticity. Following the grid, the top parameter
combinations were selected from every model, their learning
curves analyzed. 

TABLE I. TOP MODEL RESULTS FOR ALL OUTPUTS, SELECTED FROM MAPE

NCD Model R2 RMSE MAPE (%)
Asthma Cubist 0.871 0.480 3.849%
HBP* Cubist 0.803 2.186 6.077%
Cancer Cubist 0.904 0.568 7.656%

Diabetes Cubist 0.863 1.017 7.866%
PMH^ Cubist 0.904 0.953 5.531%

*(High Blood Pressure)
^(Poor Mental Health)

Fig. 3. Predicted versus expected prevalences for all five output NCDs.

While the models performed quite well, many of them
contained overfitting between the training and validation
curves. Thus, models were subsequently manually fine-tuned
in order for their training and validation learning curves to
reach a convergence threshold of 0.005 absolute difference in
MAPE.

For every output, the Cubist, GB, MLP, and RF models all
maintained significantly lower MAPE values as compared
with the kNN, Lasso, Ridge, and Elastic Net models (Tables
S2-6). Out of the four top performers, the Cubist model held
the best performance across all three evaluation metrics
throughout all outputs (Table I). Unsurprisingly, the MLP
regression came second, achieving nearly negligible
differences (≤~0.100% MAPE) compared with the Cubist
model in predicting outputs such as the prevalence of Cancer
and Poor Mental Health. For all top Cubist predictors, the R2
value maintained above 0.8 (0.86 excluding High Blood
Pressure), demonstrating the high levels of explained variance
carried by the models.

TABLE II. NCD TEST SET AND VALIDATION SET EVALUATION DISCREPANCIES

Test Set Results |Performance Change|
NCD R2 RMSE MAPE R2 RMSE MAPE

Asthma 0.857 0.510 3.903% 0.014 0.030 0.054%
HBP* 0.826 2.086 6.094% 0.023 0.100 0.017%
Cancer 0.915 0.545 7.690% 0.011 0.023 0.034%



Diabetes 0.886 0.909 7.684% 0.023 0.108 0.182%
PMH^ 0.902 0.971 5.495% 0.002 0.018 0.036%

*(High Blood Pressure)
^(Poor Mental Health)

Following the cross-validated evaluation of the top Cubist
models was performed, a test set evaluation was conducted,
with the model’s predicted versus actual values displayed (Fig.
3). Given the absence of perturbation in the Cubist algorithm,
the entirety of the training set could be used to fit the model
for prediction, ignoring the need for a cross validation step.
The test set results were found to be extremely similar to
validation results (Table II), with the highest absolute MAPE
difference being only 0.182%. A geospatial comparison of the
predicted versus expected tract values (Fig. 4) in the held-out
test set affirms the accurate predictive capabilities of the
Cubist model.

B. Feature Importances
In order to analyze the contribution of each feature in the

models- and understand the driving factors behind each NCD-
the feature importances were retrieved from every model.
While the y-transformation for the predictions of Cancer
required the use of a custom scoring function involving
inverting the Box-Cox results using lambda, all other outputs
required no alterations. An exhaustive permutation
importances search was employed to determine the
contribution of individual features. This algorithm randomly
shuffles the values for every given input feature, recording the
resulting model degradation; higher importance features will
experience larger magnitudes of detracted model performance,
and lower importance features may cause little difference in
model performance, if at all. To ensure the robustness of this
measure, every feature in the latter run cases was permuted 10
times, with the feature ranking derived from the mean increase
in MAPE (Figs. S2-6). The top 15 features for every model
were recorded and plotted (Fig. 5). In predicting Asthma and
Poor Mental Health, the extent of poverty served
unequivocally as the highest importance feature. When
predicting High Blood Pressure and Cancer values, the percent
of working-aged individuals served as the most important
predictor. For the prediction of Diabetes, the percentage of
minorities held the greatest significance, with the rate of
poverty falling slightly behind.

The unpermuted importances from the Cancer model saw
the percentage of working aged, under 17 years of age, and
minorities as the top features, with other features falling close
behind. Interestingly, despite empirical evidence between
social and economic disparities linking proximity to
pollutionary structures [30], their respective features generally
contributed little to nothing for the model, ranking far lower
than other social and demographic predictors. Still, out of
these Environmental Justice factors, the percentage of a tract
within impaired water bodies held the greatest significance for
the prediction of Asthma and High Blood Pressure, and the
percentage of houses predating 1980 held the greatest
significance in High Blood Pressure, and Cancer, Diabetes,
and Poor Mental Health prediction. For all models, the
proportion of a tract within lead or coal mines held zero
importance.

Fig. 4. Geospatial display of predicted versus expected prevalences, where
California is shown left, Washington is shown upper right, and Oregon is
shown lower right.

In order to further understand the relationship between
various features and predictive power, the 5-fold
cross-validation accuracy was plotted against the number of
top features for every output (Fig. 6), with the top features
starting from 5 and incrementing to 40, with a step size of 5
features. The said features were added sequentially from their
order of importances. For every output, the most significant
change in MAPE was seen between the addition of 5 to 10
features, with Asthma and Poor Mental Health seeing the
lowest drops of ≤~1.2% MAPE, and High Blood Pressure and
Diabetes seeing the highest drops of ≤~3% MAPE. While the
top 15 sequentially selected features (in descending order of
feature importance) were generally adequate enough to
represent the model within 0.5% MAPE of the baseline, the
top 20 features were required to achieve within 0.1% MAPE.
Thus, all of the features beyond the 20th descending feature
exhibited a negligible, or even negative, impact towards the
model. To further support this claim, the NCD models (Table
I) were retrained and retested using the subset of the top 20
features, achieving results comparable to the complete set of
41 features (Table III). Out of just the top 5 features,
sociodemographic and employment determinants held the
highest importance by far, with minority population,
population under 200% poverty, and working-aged population



all appearing four times, population under 18 years of age
appearing three times, and adult population without a
secondary diploma appearing two times. Excluding proportion
of tract inside coal- or lead-based structures, the bottom five
features importances were all classed as
Environment/Geographic, with the total land in a tract and
proportion of tract area in an EPA-sanctioned Treatment,
Storage, and Disposal site both appearing five times,
proportion of tract area in an EPA-sanctioned National Priority
List site and near an airport both appearing four times, and
proportion of tract area in an EPA-sanctioned risk
management plan site appearing three times.

Fig. 5. Top 15 features using 10-repeat permutation importances.

In general, throughout all NCDs, the Sociodemographic
factors pertaining to population under 18 and minorities held
the highest importances, the Environment/Geographic factors
pertaining to excess particulate matter 2.5 (PM2.5)
concentration unequivocally held the highest importances, the
Environmental Justice factors pertaining to proportion of a
tract near an impaired water body and percentage of houses
predating 1980 held the highest importances, and the
Economic factors pertaining to tract-wide poverty levels and
jobs per household holding the highest importances.

TABLE III. MODEL RESULTS WITH TOP 20 VALIDATION FEATURES

NCD R2 RMSE MAPE (%)
Asthma 0.871 0.480 3.849%
HBP* 0.803 2.186 6.077%
Cancer 0.904 0.568 7.656%

Diabetes 0.863 1.017 7.866%
PMH^ 0.904 0.953 5.531%

*(High Blood Pressure)
^(Poor Mental Health)

IV. DISCUSSIONS

A. Model Performance Analysis
Despite the regularized linear regressions and nearest

neighbor algorithms all performing to an objectively
adequately high degree, they are unable to capture the
non-linear relationships as well as the top performing models.
In particular, the k-Nearest Neighbors regressor, despite
holding high relevance towards certain classification tasks
[31], likely performed poorly on both training and testing data
due to its dependence on high amounts of training relative to
testing data, and further affected by the wide range of
expected output prevalences.

Fig. 6. Validation MAPE curves for a given number of top features.

For any reputable machine learning study, the goal is not
only to conceive of an accurate model, but also understand or
explain their underlying mechanisms to promote the greatest
transparency between inputs and outputs. Traditionally,
non-linear algorithms, such as neural networks or decision
trees, have made use of random initialization to combat
overfitting, and thus promote model reproducibility. In neural
networks, for instance, the model is initialized with fixed
weights and biases in the hidden layers in order to best adapt
and “tune” these values as the model iterates, as opposed to
manually setting weights and biases (ie. all to 0), which fails
to promote similar accuracies [32]. Decision trees also employ
randomization, specifically when selecting a subset of input
features at nodes- their decision making step [33]. The random
forest model, previously introduced as the aggregation of
multiple decision trees, allows for the most robust and
predictable models by increasing the number of randomized
child predictors.

While randomization can be helpful in creating robust and
generalized models, in addition to detecting extremely niche
featural relationships, their varied component values cause the
completed model to contain weariness surrounding objective
feature importances. The Cubist model triumphs in this regard
due to its use of deterministic, rather than probabilities, rules
[30], producing the same endpoint linear regressions given the
same dataset and hyperparameters, and thus, the same model
results. This allows Cubist to be one of the top models in
achieving explainable machine learning. Hence, other facets of
the Cubist model require full understanding in order to best
conclude on featural relationships. Given the non-linear
relationships in the data, a single Cubist iteration was unable
to capture the data’s complexities. The boosting parameter,
which was set to 30 for every single model, meant the model
iterated thirty times over the cross validated data, using the
same deterministic approach every iteration to revise and
retune every rule. Rather surprisingly, during the tuning
process, when altering the number of rules- the number of
endpoint linear regressions- arbitrarily increasing the rule size
both held negligible differences towards model accuracy and
towards model overfitting, seen most prominently through the
Asthma and Hypertension predictors employing 350 and 1006
rules, respectively; both nonetheless exhibited training and
validation curves that converged within the threshold, attesting
to the strong generalization abilities of the Cubist algorithm.
Additionally, during the hyperparameter tuning process, it was
found that the number of neighbors- the k nearest training



samples used to adjust a predicted output [34]- resulted in
severe overfitting, creating training and validation learning
curves with up to a 3% difference in MAPE.

When considering the diverse profiles of census tracts,
primarily their varying levels of industrial development and
qualities-of-life, the model results would be expected to
contain multiple outliers or lower predictive accuracy.
However, all outputs were predicted fairly well by the
features. While the feature set still has room to improve, this
standardized feature set marks a significant improvement from
the works of Luo et al. [7] and Feng et al. [8]. Specifically, this
paper analyzed disease prevalence on a census tract scale
rather than state scale, providing far more granular results for
hotspots of intervention; while a state may be shown to have a
high prevalence of a certain NCD, it is infeasible to target
intervention towards the entirety of the state. Rather, regional
patterns in diseased populations help officials detect specific
outliers, allowing them to more quickly address the driving
causes of diseases. Additionally, the use of two standardized
datasets, both of which were compiled through US
government-sponsored programs, helps to promote
consistency and unbiased data analysis within all geographic
regions, as opposed to Feng et al.’s use of data from the 500
Cities Project and 311 service request data [8], both of which
are available only for specific urban and suburban census
tracts.

B. Disease Determinants
For all diseases, no tracts existed such that the disease was

completely absent. Generally, diseases with shorter contraction
periods and lower mortality rates held far higher prevalence;
high blood pressure, poor mental health, diabetes, cancer, and
asthma appeared in upwards of one half, one fourth, one fifth,
one sixth, and one seventh of the population, respectively.
Cancer, despite being the one outlier over asthma-present
populations, reasonably holds the lowest average in tract
prevalence. Out of all predictions, relatively few outliers
persisted, with the largest concentration of outliers in
predicting Poor Mental Health. In the feature sets used to
predict said prevalence, sociodemographic factors by far held
the highest importance, followed by economic, environmental
justice, and environment and geographic features.

1) Generalized Lightweight Framework
For all NCDs, sociodemographic factors by far held the

highest importance, followed by economic, environmental
justice, and environment and geographic features.
Additionally, throughout all outputs, the influence of tract
proportion nearby coal and lead mines being 0 is reasonably
attributed to their extremely high skew, as the structures are
very rarely found throughout the West Coast, and hence, carry
no predictive significance. However, had regions more
prominently within these structures been trained and
evaluated, a strong, positive correlation would be expected to
be seen, primarily due to mine tailings and toxic particulate
and chemical emissions [35].

Environmental factors, holding reasonably high
importances within the top 20 features for Asthma, High
Blood Pressure, and Cancer due to the relationship between
said diseases and environmental influencers. In general,

however, environmental and land use metrics held relatively
low importances in this study due to inconsistent regional
development metrics, establishing difficulty towards feature
generalization.

Out of all sociodemographic factors, the percentage of
minorities, working class individuals, and children exhibited
the top correlation, in no particular order. Minority
populations hold disproportionate disease influence as the
result of discrimination; while overt discrimination towards
minorities has long been outlawed in the United States, de
facto factors play large roles in influencing the housing and
employment opportunities provided to these groups, also
resulting in increased exposure to harmful pollutants. These
factors, classified as Environmental Justice factors, pertain to
the proximity of a census tract to air pollution, noise pollution,
water pollution, and radiation, where a strong correlation
between minority and poverty rates and environmental
injustice has been proven in seminal studies [36]; however, the
models failed to find much importance in Environmental
Justice features, given the lower quartile rankings of a
majority of these structures and zones. The few structures that
do hold significance, however, exhibit reasonably high feature
importances. As the most significant structure, impaired
watersheds are classified as watersheds holding excess
amounts of contaminants harmful towards human bodies.
Factors such as urban runoff resulting from impervious
services introduces excess nutrients to nearby tributaries and
watersheds, consequently causing eutrophication and
undrinkable water [37]. Also, weaker regulatory standards,
particularly in minority communities, results in
disproportionate pollutant releases from industrial and
household activity into nearby water bodies [38], resulting in
similar, toxic exposure levels. 

The substantial importance between poverty rates and
minority population correlates with the conclusion of past
literature. With the primary cause of NCDs being lifestyle
choices, whether compulsory or self-decided, individuals with
lower socioeconomic statuses will have increased contraction
risks of all diseases. Select features of interest are outlined in
the successive subsections.

2) Asthma analysis
Poorer communities, for one, lack the funding to afford

adequate housing renovation measures, in addition to their
aged houses, resulting in elevated concentrations of airborne
compounds such as asbestos and structural detritus, both of
which hold proven correlations with bronchitis and asthma
contraction [39]. The environment/geographic features, while
still holding objective high importance, ranked relatively
lower than other economic and demographic determinants.
Despite these factors- the mean days above regulatory PM2.5
concentrations, mean days above regulatory Ozone
concentrations, and ambient diesel concentration- all directly
affecting asthmatic progression, sociodemographic factors
likely hold greater importance due to their greater influence
towards rendering communities unable to address asthma
sources. Similar to houses, unsafe employment conditions,
holding a significant association with respiratory irritants,
disproportionately affect minority, undereducated, and
disabled populations [40].



3) High Blood pressure analysis
For High Blood Pressure, the working aged population

held the highest correlation. This disease, unlike other
diseases, is relatively similar across socioeconomic status,
with slightly higher contraction rates found in low- and
mid-income as opposed to high-income regions [41]. The
working-aged population, the most important factor, of any
society experiences great levels of work-induced stress,
consequently resulting in the adopting adverse behaviors that
increase hypertension contraction rates. The second highest
factor being the population under 18 is explained through
physical and emotional stressors, as adolescents have been
found to be the age group most adversely affected by stress
[42]. Their stress is primarily found through school and family
responsibilities, coupled with their inherent quicker adoption
of unhealthy behaviors and poorer coping mechanisms relative
to adults [43].

4) Cancer Analysis
In Cancer predictions, the working aged population is the

most significant factor due to work related exposure [44].
Additionally, in the context of environmental justice,
minorities, the second most important feature, traditionally
face blue-collar working conditions and housing opportunities
with the highest level of carcinogenic exposure [45]. This is
supported by the high importance of the housing age variable,
confirming speculation that some communities may not have
the adequate resources to both evaluate housing quality and
implement the renovations required to mitigate the presence of
pollutants such as asbestos, lead contamination, and radon
poisoning from underground storage compartments [46].
Surprisingly, the proximity to impaired water bodies
containing carcinogens is relatively low, attesting that many
watersheds have likely been tested thoroughly for water
contamination prior to consumption.

5) Diabetes Analysis
In a multitude of research papers, Diabetes is by far most

heavily influenced by minority populations. This fact can be
attributed to the racially-influenced construction of alcohol
outlets within minority communities [47]. This idea could be
further supported through poverty rates, as these shops may
mark their products cheaper than less-accessible, traditional
markets. Other causes, such as white-collar office roles, causes
individuals to adopt sedentary lifestyles, and, in conjunction
with high blood pressure, often leads to elevated contraction
risks for diabetes [48]. Interestingly, the inclusion of
households with more than two cars holds reasonable
significance, and is supported by existing research to embody
a negative correlation due to improved lifestyle habits as
economic stability improves [49].

6) Poor Mental Health Analysis
By far, the most important predictor of Poor Mental Health

is poverty. A linkage between poverty, lower self-esteem,
increased psychological stress, and detracted mental health has
been well-researched [50]. Despite common understanding of
the work, financial, and familial responsibilities of adults, the
population of children held surprisingly high importance
within the model. Additionally, there exists a prominent
stigma surrounding therapy and seeking professional help,
particularly within adolescents [51], leading many early-stage

cases of poor mental health and high blood pressure to
proliferate.

C. Limitations and Future Work
Although our results pose significant implications towards

the future of public care, self care, and policy, the NCD
prevalence may be subject to varying degrees of reporting
biases, particularly among households without convenient
access to medical providers to report their health. In addition,
census tracts with smaller populations means that every
contracted case of an NCD would hold greater proportion than
larger tracts, possibly misrepresenting the data and causing
some discrepancies between predicted versus expected results.
Despite these limitations, the model predictions still remained
reasonably robust.

Future work regarding our results include using more
specific featural breakdowns, such as various poverty and
economic levels rather than their aggregation into binary
classes (ie. below 200% poverty or not). This not only helps
the model learn even more specific features, potentially
increasing model predictive capabilities, but also allows for
greater transparency in understanding granular features. Other
features of interest include past NCD metrics, such past
diagnoses, which could provide insight into disease duration
and trends in contractions.

V. CONCLUSION

In this paper, the presence of five NCDs, Asthma, High
Blood Pressure, Cancer, Diabetes, and Poor Mental Health
was explored and analyzed. Using standardized databases
collected by the US EPA and CDC, separated into census
tracts in the West Coast states California, Oregon, and
Washington, the Cubist model topped the predictive accuracy
charts, outcompeting other top non-linear models. Through the
machine learning approach presented in this paper, all five of
the presented diseases are proven to be both predictable,
interpretable, and reliable, unlocking the potential for
researchers to provide targeted intervention schemes towards
the most vulnerable communities nationwide.

SUPPLEMENTAL MATERIALS

The supporting information can be downloaded here.
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